镍基合金表面NiCrAlY/NiCrAlY-YSZ/YSZ热障涂层及其制备方法与流程

  镍基合金表面NiCrAlY/NiCrAlY-YSZ/YSZ热障涂层及其制备方法与流程

  本发明属于表面材料技术领域,具体涉及一种镍基合金表面nicraly/nicraly-ysz/ysz热障涂层及其制备方法。

  背景技术:

  热障涂层是将高耐温、低导热的陶瓷材料涂覆在合金表面以提高合金的抗高温氧化腐蚀能力、降低表面工作温度的一种热防护技术,被认为是航空发动机涡轮叶片制备的三大关键技术之一。但由于金属与陶瓷的热匹配性较差,导致热障涂层在频繁经受冷热循环过程中,容易发生涂层开裂、剥离等形式的失效。

  为提高热障涂层东锜属与陶瓷之间的热匹配性,哈尔滨工程大学wang等人研究了掺杂ysz纤维和sic晶须对热障涂层抗热震性和抗冲蚀性能的影响,结果发现,纤维、晶须掺杂改性涂层的抗热震性能提高58.8%,冲蚀速率下降61.0%。(汪倡.掺杂改性复合热障涂层组织与性能研究[d].哈尔滨工程大学,2018)。wei等人通过nd2o3和yb2o3共掺杂改性ysz涂层,掺杂改性后陶瓷层由柱状晶结构转变为树枝状结构,降低涂层传热系数,有利于于涂层的使用寿命的提高(魏秋利,郭洪波,宫声凯.电子束物理气相沉积nd2o3和yb2o3共掺杂的ysz热障涂层研究[j].航空学报,2007(b08):163-167.)。此外,金属到陶瓷成分连续变化的梯度热障涂层的研究也备受关注,但由于制备技术不成熟,一直未能得到广泛应用。

  综上所述,目前改进热障涂层东锜属与陶瓷热匹配性的方法都存在制备工艺复杂等缺陷。

  技术实现要素:

  本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种镍基合金表面nicraly/nicraly-ysz/ysz热障涂层。该热障涂层在nicraly金属涂层和ysz陶瓷涂层之间添加了热膨胀系数介于nicraly和ysz之间的nicraly-ysz金属陶瓷复合涂层,有效缓解了nicraly金属涂层和ysz陶瓷涂层之间的热不匹配性,提高了热障涂层的抗热震性能,同时改善了镍基合金与各涂层之间的热匹配性,进一步避免了热障涂层的开裂剥离失效,延长了热障涂层的使用期限。

  为解决上述技术问题,本发明采用的技术方案是:镍基合金表面nicraly/nicraly-ysz/ysz热障涂层,其特征在于,包括依次沉积在镍基合金表面的nicraly金属涂层、ysz陶瓷涂层以及位于nicraly金属涂层和ysz陶瓷涂层之间的nicraly-ysz金属陶瓷复合涂层。

  本发明在依次沉积在镍基合金表面的nicraly金属涂层和ysz陶瓷涂层之间添加了nicraly-ysz金属陶瓷复合涂层,nicraly金属涂层在镍基合金表面形成致密的氧化层,阻挡了外界有害元素特别是氧的进入,从而保护镍基合金基体,具有抗氧化性、抗腐蚀性的作用,并且起到粘接、过渡作用,ysz陶瓷涂层(成分为y2o3部分稳定的zro2)为陶瓷层,热导率较低,可显著降低镍基合金基体的表面温度,具有高温防护的作用,nicraly-ysz金属陶瓷复合涂层由nicraly和ysz两者混合组成,热膨胀系数介于nicraly和ysz之间,有效缓解了nicraly金属涂层和ysz陶瓷涂层之间的热不匹配性,提高了热障涂层的抗热震性能;同时,从镍基合金表面到nicraly金属涂层、到nicraly-ysz金属陶瓷复合涂层、再到ysz陶瓷涂层的热膨胀系数逐渐减小,改善了镍基合金与各涂层之间的热匹配性,进一步避免了镍基合金表面nicraly/nicraly-ysz/ysz热障涂层的开裂剥离等形式的失效,延长了热障涂层的使用期限,

  另外,本发明还提供了一种镍基合金表面nicraly/nicraly-ysz/ysz热障涂层的制备方法,其特征在于,该方法包括以下步骤:

  步骤一、对镍基合金进行逐级打磨,然后进行超声波清洗;

  步骤二、采用电子束物理气相沉积法在步骤一中经超声波清洗后的镍基合金的表面上沉积nicraly金属涂层;

  步骤三、采用电子束物理气相沉积法在步骤二中沉积的nicraly金属涂层的表面上沉积nicraly-ysz-金属陶瓷复合涂层;

  步骤四、采用电子束物理气相沉积法在步骤三中沉积的nicraly-ysz金属陶瓷复合涂层的表面上沉积ysz陶瓷涂层,从而在镍基合金表面形成nicraly/nicraly-ysz/ysz热障涂层。

  本发明采用电子束物理气相沉积法在镍基合金表面依次沉积nicraly金属涂层、nicraly-ysz-金属陶瓷复合涂层和ysz陶瓷涂层,从而在镍基合金形成nicraly/nicraly-ysz/ysz热障涂层,靶材材料为已广泛应用的nicraly和ysz,并且工艺过程简单,可重复性好,易于操作。

  上述的方法,其特征在于,步骤一中依次采用80#、200#、400#、600#、800#和1000#的水磨砂纸对高温合金基体进行逐级打磨,所述超声波清洗采用的清洗剂为丙酮,超声波清洗的时间为10min~30min。采用上述砂纸打磨及超声清洗后的镍基合金的表面纯净、无杂质,能够达到电子束物理气相沉积(eb-pvd)制备涂层的要求。

  上述的方法,其特征在于,步骤二中所述nicraly金属涂层的厚度为10μm~30μm;步骤二中所述电子束物理气相沉积法的工艺参数为:沉积室真空度小于3×10-3pa,经超声波清洗后的镍基合金的温度700℃~900℃,nicraly靶材的蒸发电流0.8a~1.2a,旋转速度5r/min~15r/min,靶基距200mm~500mm。nicraly金属涂层的厚度为10μm~30μm,能显著发挥nicraly金属涂层的抗氧化性和抗腐蚀性,并且起到良好的粘接、过渡作用;电子束物理气相沉积法制备nicraly金属涂层采用的靶材成分和质量纯度可满足制备nicraly金属涂层的成分需要,且杂质含量在允许范围内,采用上述工艺参数制备的nicraly金属涂层厚度均匀,与镍基合金表面的结合力良好。

  上述的方法,其特征在于,步骤三中所述nicraly-ysz金属陶瓷复合涂层的厚度为10μm~30μm;步骤三中所述电子束物理气相沉积法的工艺参数为:沉积室真空度小于3×10-3pa,表面上沉积nicraly金属涂层的镍基合金的温度700℃~900℃,nicraly靶材的蒸发电流0.8a~1.2a,ysz靶材的蒸发电流0.8a~1.5a,旋转速度5r/min~15r/min,靶基距200mm~500mm。nicraly-ysz金属陶瓷复合涂层厚度在10μm~30μm范围内,能起到显著的过度nicraly金属与ysz陶瓷的效果,有效缓解两者的热不匹配性;电子束物理气相沉积法制备nicraly-ysz金属陶瓷复合涂层采用的靶材成分和质量纯度可满足制备nicraly-ysz金属陶瓷复合涂层的成分需要,且杂质含量在允许范围内,采用上述工艺参数制备的nicraly-ysz-金属陶瓷复合涂层中nicraly与ysz的比例适宜,成分均匀,且与nicraly金属涂层的结合力良好。

  上述的方法,其特征在于,步骤四中所述ysz陶瓷涂层的厚度为30μm~70μm;步骤四中所述电子束物理气相沉积法的工艺参数为:沉积室真空度小于3×10-3pa,表面上沉积nicraly金属涂层和nicraly-ysz金属陶瓷复合涂层的镍基合金的温度700℃~900℃,ysz靶材的蒸发电流0.8a~1.5a,旋转速度5r/min~15r/min,靶基距200mm~500mm。ysz陶瓷涂层的厚度在30μm~70μm范围内,能起到显著的隔热效果,且与nicraly-ysz-金属陶瓷复合涂层的热匹配性较好;电子束物理气相沉积法制备nicraly-ysz金属陶瓷复合涂层采用的靶材成分和质量纯度可满足制备ysz陶瓷涂层的成分需要,且杂质含量在允许范围内,采用上述工艺参数制备的ysz陶瓷涂层厚度均匀,且与nicraly-ysz金属陶瓷复合涂层的结合力良好。

  本发明与现有技术相比具有以下优点:

  1、本发明在依次沉积在镍基合金表面的nicraly金属涂层和ysz陶瓷涂层之间添加了nicraly-ysz金属陶瓷复合涂层,nicraly-ysz金属陶瓷复合涂层由nicraly和ysz两者混合组成,热膨胀系数介于nicraly和ysz之间,有效缓解了nicraly金属涂层和ysz陶瓷涂层之间的热不匹配性,提高了热障涂层的抗热震性能;同时改善了镍基合金与各涂层之间的热匹配性,进一步避免了镍基合金表面nicraly/nicraly-ysz/ysz热障涂层的开裂剥离失效,延长了热障涂层的使用期限。

  2、本发明热障涂层中更外层的ysz陶瓷涂层为柱状晶结构,为氧的进入提供了扩散通道,中间层为nicraly-ysz金属陶瓷复合涂层,中间层中的nicraly与氧形成金属氧化物,减缓了氧的扩散速率,从而减缓了空气中的氧向nicraly金属涂层的扩散,降低了高温防护过程中热生长氧化物层(tgo)的生长速率,提高了nicraly/nicraly-ysz/ysz热障涂层的抗氧化性能。

  3、本发明仅采用电子束物理气相沉积法为主要的制备方法,靶材材料为已广泛应用的nicraly和ysz,并且工艺过程简单,可重复性好,易于操作。

  下面通过附图和实施例对本发明的技术方案作进一步的详细描述。

  附图说明

  图1是本发明实施例1的dz125镍基合金表面nicraly/nicraly-ysz/ysz热障涂层的截面电镜图。

  图2是本发明实施例1的dz125镍基合金表面nicraly/nicraly-ysz/ysz热障涂层经水冷热震试验后的截面电镜图。

  具体实施方式

  本发明实施例1~实施例3中的dz125镍基合金表面nicraly/nicraly-ysz/ysz热障涂层均包括依次沉积在dz125镍基合金表面的nicraly金属涂层、ysz陶瓷涂层以及位于nicraly金属涂层和ysz陶瓷涂层之间的nicraly-ysz金属陶瓷复合涂层。

  本发明dz125镍基合金表面nicraly/nicraly-ysz/ysz热障涂层的制备方法通过实施例1~实施例3进行详细描述。

  实施例1

  本实施例的dz125镍基合金表面nicraly/nicraly-ysz/ysz热障涂层的制备方法包括以下步骤:

  步骤一、依次采用80#、200#、400#、600#、800#、1000#的水磨砂纸对dz125镍基合金进行逐级打磨,然后放入丙酮中进行超声波清洗15min;

  步骤二、采用电子束物理气相沉积法在步骤一中经超声波清洗后的dz125镍基合金的表面上沉积厚度为20μm的nicraly金属涂层;所述电子束物理气相沉积法的工艺参数为:沉积室真空度小于3×10-3pa,经超声波清洗后的dz125镍基合金的温度800℃,nicraly靶材的蒸发电流1.0a,旋转速度5r/min,靶基距300mm;

  步骤三、采用电子束物理气相沉积法在步骤二中沉积的nicraly金属涂层的表面上沉积厚度为30μm的nicraly-ysz-金属陶瓷复合涂层;所述电子束物理气相沉积法的工艺参数为:沉积室真空度小于3×10-3pa,表面上沉积nicraly金属涂层的镍基合金的温度800℃,nicraly靶材的蒸发电流1.5a,ysz靶材的蒸发电流1.0a,旋转速度10r/min,靶基距200mm;

  步骤四、采用电子束物理气相沉积法在步骤三中沉积的nicraly-ysz金属陶瓷复合涂层的表面上沉积厚度为50μm的ysz陶瓷涂层,从而在镍基合金表面形成nicraly/nicraly-ysz/ysz热障涂层;所述电子束物理气相沉积法的工艺参数为:沉积室真空度小于3×10-3pa,表面上沉积nicraly金属涂层和nicraly-ysz金属陶瓷复合涂层的镍基合金的温度900℃,ysz靶材的蒸发电流1.2a,旋转速度5r/min,靶基距200mm。

  图1是本实施例的dz125镍基合金表面nicraly/nicraly-ysz/ysz热障涂层的截面电镜图,从图1可以看出,本实施例的dz125镍基合金表面nicraly/nicraly-ysz/ysz热障涂层层层次分明、界面连续,各涂层间结合紧密。

  将本实施例的dz125镍基合金表面nicraly/nicraly-ysz/ysz热障涂层进行水冷热震试验,具体过程为:在1100℃保温5min后进行水冷热震100次,结果如图2所示。

  图2是本实施例的dz125镍基合金表面nicraly/nicraly-ysz/ysz热障涂层经水冷热震试验后的截面电镜图,从图2可以看出,本实施例的dz125镍基合金表面nicraly/nicraly-ysz/ysz热障涂层未发生剥落,各层界面结合良好,说明该dz125镍基合金表面nicraly/nicraly-ysz/ysz热障涂层具有优异的抗热震性能。

  实施例2

  本实施例的dz125镍基合金表面nicraly/nicraly-ysz/ysz热障涂层的制备方法包括以下步骤:

  步骤一、依次采用80#、200#、400#、600#、800#、1000#的水磨砂纸对dz125镍基合金进行逐级打磨,然后放入丙酮中进行超声波清洗10min;

  步骤二、采用电子束物理气相沉积法在步骤一中经超声波清洗后的dz125镍基合金的表面上沉积厚度为10μm的nicraly金属涂层;所述电子束物理气相沉积法的工艺参数为:沉积室真空度小于3×10-3pa,经超声波清洗后的dz125镍基合金的温度900℃,nicraly靶材的蒸发电流0.8a,旋转速度15r/min,靶基距500mm;

  步骤三、采用电子束物理气相沉积法在步骤二中沉积的nicraly金属涂层的表面上沉积厚度为10μm的nicraly-ysz金属陶瓷复合涂层;所述电子束物理气相沉积法的工艺参数为:沉积室真空度小于3×10-3pa,表面上沉积nicraly金属涂层的镍基合金的温度900℃,nicraly靶材的蒸发电流0.8a,ysz靶材的蒸发电流0.8a,旋转速度15r/min,靶基距500mm;

  步骤四、采用电子束物理气相沉积法在步骤三中沉积的nicraly-ysz金属陶瓷复合涂层的表面上沉积厚度为30μm的ysz陶瓷涂层,从而在镍基合金表面形成nicraly/nicraly-ysz/ysz热障涂层;所述电子束物理气相沉积法的工艺参数为:沉积室真空度小于3×10-3pa,表面上沉积nicraly金属涂层和nicraly-ysz金属陶瓷复合涂层的镍基合金的温度800℃,ysz靶材的蒸发电流0.8a,旋转速度15r/min,靶基距500mm。

  将本实施例的dz125镍基合金表面nicraly/nicraly-ysz/ysz热障涂层进行水冷热震试验,具体过程为:在1100℃保温5min后进行水冷热震150次,结果显示本实施例的dz125镍基合金表面nicraly/nicraly-ysz/ysz热障涂层未发生剥落,各层界面结合良好,说明该dz125镍基合金表面nicraly/nicraly-ysz/ysz热障涂层具有优异的抗热震性能。

  实施例3

  本实施例的dz125镍基合金表面nicraly/nicraly-ysz/ysz热障涂层的制备方法包括以下步骤:

  步骤一、依次采用80#、200#、400#、600#、800#、1000#的水磨砂纸对dz125镍基合金进行逐级打磨,然后放入丙酮中进行超声波清洗30min;

  步骤二、采用电子束物理气相沉积法在步骤一中经超声波清洗后的dz125镍基合金的表面上沉积厚度为30μm的nicraly金属涂层;所述电子束物理气相沉积法的工艺参数为:沉积室真空度小于3×10-3pa,经超声波清洗后的dz125镍基合金的温度700℃,nicraly靶材的蒸发电流1.2a,旋转速度10r/min,靶基距200mm;

  步骤三、采用电子束物理气相沉积法在步骤二中沉积的nicraly金属涂层的表面上沉积厚度为20μm的nicraly-ysz金属陶瓷复合涂层;所述电子束物理气相沉积法的工艺参数为:沉积室真空度小于3×10-3pa,表面上沉积nicraly金属涂层的镍基合金的温度700℃,nicraly靶材的蒸发电流1.2a,ysz靶材的蒸发电流1.5a,旋转速度5r/min,靶基距300mm;

  步骤四、采用电子束物理气相沉积法在步骤三中沉积的nicraly-ysz金属陶瓷复合涂层的表面上沉积厚度为70μm的ysz陶瓷涂层,从而在镍基合金表面形成nicraly/nicraly-ysz/ysz热障涂层;所述电子束物理气相沉积法的工艺参数为:沉积室真空度小于3×10-3pa,表面上沉积nicraly金属涂层和nicraly-ysz金属陶瓷复合涂层的镍基合金的温度700℃,ysz靶材的蒸发电流1.5a,旋转速度10r/min,靶基距300mm。

  将本实施例的dz125镍基合金表面nicraly/nicraly-ysz/ysz热障涂层进行水冷热震试验,具体过程为:在1100℃保温5min后进行水冷热震100次,结果显示本实施例的dz125镍基合金表面nicraly/nicraly-ysz/ysz热障涂层未发生剥落,各层界面结合良好,说明该dz125镍基合金表面nicraly/nicraly-ysz/ysz热障涂层具有优异的抗热震性能。

本文部分内容来源于网络,我们仅作为信息分享。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 promaxsts@163.com 举报,一经查实,本站将立刻删除。
原文链接:优钢网 » 镍基合金表面NiCrAlY/NiCrAlY-YSZ/YSZ热障涂层及其制备方法与流程

发表评论

加载中~

加入本站VIP会员订阅计划,海量钢材知识免费查看

目前为止共有 3654 位**的VIP会员加入! 立刻加入VIP会员